Skip to Main Content
‚Äč

References

References

Welcome (Tom Thornton)

1 United Nations Environment Programme. (2022). GOAL 13: Climate action. UNEP - UN Environment Programme. https://unstats.un.org/sdgs/report/2020/goal-13/ Introduction (Bruce Botelho) 1 Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13(4), 322–334. https://doi.org/10.1016/0016-7037(58)90033-4

What we’re experiencing: Atmospheric, marine, terrestrial, and ecological effects

A.4. Less snow (Eran Hood)

1 Shanley, C. S., Pyare, S., Goldstein, M. I., Alaback, P. B., Albert, D. M., Beier, C. M., Brinkman, T. J., Edwards, R. T., Hood, E., MacKinnon, A., McPhee, M. V., Patterson, T. M., Suring, L. H., Tallmon, D. A., & Wipfli, M. S. (2015). Climate change implications in the northern coastal temperate rainforest of North America. Climatic Change, 130(2), 155–170. https://doi.org/10.1007/s10584-015-1355-9

2 Nolin, A. W., & Daly, C. (2006). Mapping “At Risk” Snow in the Pacific Northwest. Journal of Hydrometeorology, 7(5), 1164–1171. https://doi.org/10.1175/JHM543.1

B.1. Surface uplift and sea level rise (Eran Hood)

1 Motyka, R., Larsen, C. F., Freymueller, J. T., & Echelmeyer, K. A. (2007). Post Little Ice Age Glacial Rebound in Glacier Bay National Park and Surrounding Areas. Alaska Park Science, 6(1), 36-41. https://www.nationalparkstraveler.org/sites/default/files/legacy_files/GLBA-Uplift.pdf

2 Hu, Y., & Freymueller, J. T. (2019). Geodetic Observations of Time‐Variable Glacial Isostatic Adjustment in Southeast Alaska and Its Implications for Earth Rheology. Journal of Geophysical Research, 124(9), 9870–9889. https://doi.org/10.1029/2018JB017028

B.2. Extensive effects of a warming ocean (Heidi Pearson)

1 Dorn, M., Cunningham, C., Dalton M., Fadely, B., Gerke, B., Hollowed, A., Holsman, K., Moss, J., Ormseth, O., Palsson, W., Ressler, P., Rogers, L., Sigler, M., Stabeno, P., & Szymkowiak, M. (2018). A Climate Science: Regional Action Plan for the Gulf of Alaska. NOAA Technical Memorandum NMFS-AFSC, 376. https://repository.library.noaa.gov/view/noaa/17539

2 Joh, Y., & Di Lorenzo, E. (2017). Increasing Coupling Between NPGO and PDO Leads to Prolonged Marine Heatwaves in the Northeast Pacific. Geophysical Research Letters, 44(22), 11,663-11,671. https://doi.org/10.1002/2017GL075930

3 Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7718), 360–364. https://doi.org/10.1038/s41586-018-0383-9

4 Cornwall, W. (2019). Ocean heat waves like the Pacific’s deadly “Blob” could become the new normal. Science 42 News, Jan. 21, 8.

5 Weingartner, T., Eisner, L., Eckert, G. L., & Danielson, S. (2009). Southeast Alaska: oceanographic habitats and linkages. Journal of Biogeography, 36(3), 387–400. https://doi.org/10.1111/j.1365-2699.2008.01994.x

6 Whitney, F. A. (2015). Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophysical Research Letters, 42(2), 428–431. https://doi.org/10.1002/2014GL062634

7 L’Heureux, M. L., Takahashi, K., Watkins, A. B., Barnston, A. G., Becker, E. J., Di Liberto, T. E., Gamble, F., Gottschalck, J., Halpert, M. S., Huang, B., Mosquera-Vásquez, K., & Wittenberg, A. T. (2017). Observing and Predicting the 2015/16 El Niño. Bulletin of the American Meteorological Society, 98(7), 1363–1382. https://journals.ametsoc.org/view/journals/bams/98/7/bams-d-16-0009.1.xml

8 Cartwright, R., Venema, A., Hernandez, V., Wyels, C., Cesere, J., & Cesere, D. (2019). Fluctuating reproductive rates in Hawaii’s humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. Royal Society Open Science, 6(3), 181463. https://doi.org/10.1098/rsos.181463

9 Kintisch, E. (2015). Climate crossroads. Science, 350(6264), 1016-1017. https://www.science.org/doi/abs/10.1126/science.350.6264.1016

10 Lorenzo, E. D., & Mantua, N. J. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6, 1042–1047. https://www.nature.com/articles/nclimate3082

11 Walsh, J. E., Thoman, R. L., Bhatt, U. S., Bieniek, P. A., Brettschneider, B., Brubaker, M., Danielson, S., Lader, R., Fetterer, F., Holderied, K., Iken, K., Mahoney, A., McCammon, M., & Partain, J. (2018). The High Latitude Marine Heat Wave of 2016 and Its Impacts on Alaska. Bulletin of the American Meteorological Society, 99(1), S39–S43. https://doi.org/10.1175/BAMS-D-17-0105.1

12 van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., & Chase, J. M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368(6489), 417–420. https://doi.org/10.1126/science.aax9931

13 Rogers, L. A., Wilson, M. T., Duffy‐Anderson, J. T., Kimmel, D. G., & Lamb, J. F. (2021). Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fisheries Oceanography, 30(2), 142–158. https://doi.org/10.1111/fog.12508

14 Barbeaux, S. J., Holsman, K., & Zador, S. (2020). Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery. Frontiers in Marine Science, 7, 703. https://doi.org/10.3389/fmars.2020.00703

15 Piatt, J. F., Parrish, J. K., Renner, H. M., Schoen, S. K., Jones, T. T., Arimitsu, M. L., Kuletz, K. J., Bodenstein, B., García-Reyes, M., Duerr, R. S., Corcoran, R. M., Kaler, R. S. A., McChesney, G. J., Golightly, R. T., Coletti, H. A., Suryan, R. M., Burgess, H. K., Lindsey, J., Lindquist, K., Warzybok, P., Jahncke, J., Roletto, J., & Sydeman, W. J. (2020). Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLoS ONE, 15(1), e0226087. https://doi.org/10.1371/journal.pone.0226087

16 Van Hemert, C., Schoen, S. K., Litaker, R. W., Smith, M. M., Arimitsu, M. L., Piatt, J. F., Holland, W. C., Ransom Hardison, D., & Pearce, J. M. (2020). Algal toxins in Alaskan seabirds: Evaluating the role of saxitoxin and domoic acid in a large-scale die-off of Common Murres. Harmful Algae, 92, 101730. https://pubs.er.usgs.gov/publication/70207572

17 Savage, K. (2017). Alaska and British Columbia large whale unusual mortality event summary report. NOAA Institute Repository: 17715. https://repository.library.noaa.gov/view/noaa/17715

18 Neilson, J. L., Gabriele, C. M., & Taylor-Thomas, L. F. (2018). Humpback Whale Monitoring in Glacier Bay and Adjacent Waters 2017: Annual progress report. (NPS/GLBA/NRR—2018/1660). National Park Service. https://irma.nps.gov/DataStore/DownloadFile/602012

19 Neilson, J. L., & Gabriele, C. M. (2020). Glacier Bay & Icy Strait Humpback Whale Population Monitoring: 2019 Update. National Park Service Resource Brief. Gustavus, Alaska. https://irma.nps.gov/DataStore/DownloadFile/640111

20 McDowell Group. (2020). Economic Analysis of Whale Watching Tourism in Alaska. Prepared for NOAA Fisheries (Alaska). https://media.fisheries.noaa.gov/2020-11/Economic-Analysis-Whale-Watching-Tourism-Alaska.pdf?VersionId=null

21 Grémillet, D., Fort, J., Amélineau, F., Zakharova, E., Le Bot, T., Sala, E., & Gavrilo, M. (2015). Arctic warming: nonlinear impacts of sea‐ice and glacier melt on seabird foraging. Global Change Biology, 21(3), 1116–1123. https://doi.org/10.1111/gcb.12811

22 Hazen, E. L., Abrahms, B., Brodie, S., Carroll, G., Jacox, M. G., Savoca, M. S., Scales, K. L., Sydeman, W. J., & Bograd, S. J. (2019). Marine top predators as climate and ecosystem sentinels. Frontiers in Ecology and the Environment, 17(10), 565–574. https://doi.org/10.1002/fee.2125

23 Ward, E. J., Adkison, M., Couture, J., Dressel, S. C., Litzow, M. A., Moffitt, S., Hoem Neher, T., Trochta, J., & Brenner, R. (2017). Evaluating signals of oil spill impacts, climate, and species interactions in Pacific herring and Pacific salmon populations in Prince William Sound and Copper River, Alaska. PLoS ONE, 12(3), e0172898. https://doi.org/10.1371/journal.pone.0172898

B.3. Increasing ocean acidification (Robert Foy)

1 Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365. https://doi.org/10.1038/425365a

2 Fabry, V., McClintock, J., Mathis, J., & Grebmeier, J. (2009). Ocean Acidification at High Latitudes: The Bellwether. Oceanography, 22(4), 160–171. https://doi.org/10.5670/oceanog.2009.105

3 Pilcher, D. J., Siedlecki, S. A., Hermann, A. J., Coyle, K. O., Mathis, J. T., & Evans, W. (2018). Simulated Impact of Glacial Runoff on CO2 Uptake in the Gulf of Alaska. Geophysical Research Letters, 45(2), 880–890. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL075910

4 Alaska Ocean Observing System. https://aoos.org/

5 Alaska Ocean Acidification Network. (2019). Ocean Acidification: an annual update on the state of ocean acidification in Alaska. https://aoos.org/wp-content/uploads/2019/12/2019_OA_Science_Update_medres.pdf

6 Cai, W.-J., Feely, R. A., Testa, J. M., Li, M., Evans, W., Alin, S. R., Xu, Y.-Y., Pelletier, G., Ahmed, A., Greeley, D. J., Newton, J. A., & Bednaršek, N. (2021). Natural and Anthropogenic Drivers of Acidification in Large Estuaries. Annual Review of Marine Science, 13(1), 23–55. https://doi.org/10.1146/annurev-marine-010419-011004

7 Long, W.C., Swiney, K. M., & Foy, R. J. (2013). Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Marine Pollution Bulletin, 69(1–2), 38–47. https://doi.org/10.1016/j.marpolbul.2013.01.011

8 Long, W. C., Swiney, K. M., Harris, C., Page, H. N., & Foy, R. J. (2013). Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) Growth, Condition, Calcification, and Survival. PLoS ONE, 8(4), e60959. https://doi.org/10.1371/journal.pone.0060959

9 Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P., Sutula, M., & Weisberg, S. B. (2019). Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming. Frontiers in Marine Science, 6, 227. https://doi.org/10.3389/fmars.2019.00227

10 Doubleday, A. J., & Hopcroft, R. R. (2015). Interannual patterns during spring and late summer of larvaceans and pteropods in the coastal Gulf of Alaska, and their relationship to pink salmon survival. Journal of Plankton Research, 37(1), 134–150. https://doi.org/10.1093/plankt/fbu092

11 Williams, C. R., Dittman, A. H., McElhany, P., Busch, D. S., Maher, M. T., Bammler, T. K., MacDonald, J. W., & Gallagher, E. P. (2019). Elevated CO2 impairs olfactory‐mediated neural and behavioral responses and gene expression in ocean‐phase coho salmon (Oncorhynchus kisutch). Global Change Biology, 25(3), 963–977. https://doi.org/10.1111/gcb.14532

12 Mathis, J. T., Cooley, S. R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T., Hauri, C., Evans, W., Cross, J. N., & Feely, R. A. (2015). Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography, 136, 71–91. https://doi.org/10.1016/j.pocean.2014.07.001

13 Evans, W., Lebon, G. T., Harrington, C. D., Takeshita, Y., Bidlack, A. (2022) Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry. Biogeosciences, 19, 1277–1301. https://doi.org/10.5194/bg-19-1277-2022

C.1. More landslides (Sonia Nagorski and Aaron Jacobs)

1 Tetra Tech. (2021). Downtown Juneau Landslide and Avalanche Assessment, 3rd draft. May 28. (Commissioned by City and Borough of Juneau) File: ENG.EARC03168-01. https://juneau.org/wp-content/uploads/2021/07/Downtown_Juneau_Landslide_and_Avalanche_Assessment_IFR_Report_Third%20Draft_Reduced.pdf

2 Bogaard, T. A., & Greco, R. (2016). Landslide hydrology: From hydrology to pore pressure. WIREs Water, 3(3), 439–459. https://doi.org/10.1002/wat2.1126

3 Sharma, A. R., & Déry, S. J. (2020). Contribution of atmospheric rivers to annual, seasonal, and extreme precipitation across British Columbia and Southeastern Alaska. Journal of Geophysical Research: Atmospheres, 125(9). https://doi.org/10.1029/2019JD031823

4 Waliser, D., & Guan, B. (2017). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10(3), 179–183. https://doi.org/10.1038/ngeo2894

5 Tan, Y., Zwiers, F., Yang, S., Li, C., & Deng, K. (2020). The Role of Circulation and Its Changes in Present and Future Atmospheric Rivers over Western North America. Journal of Climate, 33(4), 1261–1281. https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0134.1.xml

6 McFarland, H., Walsh, J., & Thoman, R. (2019). Alaska’s changing environment: documenting Alaska’s physical and biological changes through observations. https://doi.org/10.13140/RG.2.2.24481.15209

7 Lader, R., Bidlack, A., Walsh, J. E., Bhatt, U. S., & Bieniek, P. A. (2020). Dynamical Downscaling for Southeast Alaska: Historical Climate and Future Projections. Journal of Applied Meteorology and Climatology, 59(10), 1607– 1623. https://doi.org/10.1175/JAMC-D-20-0076.1

C.2. Mendenhall Glacier continues to retreat (Jason Amundson)

1 Motyka, R. J., O’Neel, S., Connor, C. L., & Echelmeyer, K. A. (2003). Twentieth century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off. Global and Planetary Change, 35(1–2), 93–112. https://doi.org/10.1016/S0921-8181(02)00138-8

2 Larsen, C. (2020). IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets, Version 1. [Data set]. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/AATE4JJ91EHC

3 USGS Earth Resources Observation and Science (EROS) Center. (2018). USGS EROS Archive—Digital Elevation—Interferometric Synthetic Aperture Radar (IFSAR)—Alaska. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-interferometric-synthetic-aperture-radar

4 Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3), 168–173. https://www.nature.com/articles/s41561-019-0300-3

5 Kienholz, C., Pierce, J., Hood, E., Amundson, J. M., Wolken, G. J., Jacobs, A., Hart, S., Wikstrom Jones, K., Abdel- Fattah, D., Johnson, C., & Conaway, J. S. (2020). Deglacierization of a Marginal Basin and Implications for Outburst Floods, Mendenhall Glacier, Alaska. Frontiers in Earth Science, 8, 137. https://doi.org/10.3389/feart.2020.00137

C.3. Tongass Forest Impacts and Carbon (Dave D’Amore)

1 U.S. Forest Service. Addressing Climate Change on the Tongass. Issue Paper, June 2010. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5252603.pdf

2 Bisbing, S. M., Cooper, D. J., D’Amore, D. V., & Marshall, K. N. (2016). Determinants of conifer distributions across peatland to forest gradients in the coastal temperate rainforest of southeast Alaska. Ecohydrology, 9(2), 354–367. https://doi.org/10.1002/eco.1640

3 Hennon, P. E., D’Amore, D. V., Schaberg, P. G., Wittwer, D. T., & Shanley, C. S. (2012). Shifting Climate, Altered Niche, and a Dynamic Conservation Strategy for Yellow-Cedar in the North Pacific Coastal Rainforest. BioScience, 62(2), 147–158. https://doi.org/10.1525/bio.2012.62.2.8

4 D’Amore, D. V., Hennon, P. E., Schaberg, P. G., & Hawley, G. J. (2009). Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: A new hypothesis. Forest Ecology and Management, 258(10), 2261–2268. https://doi.org/10.1016/j.foreco.2009.03.006

5 Schaberg, P. G., D’Amore, D. V., Hennon, P. E., Halman, J. M., & Hawley, G. J. (2011). Do limited cold tolerance and shallow depth of roots contribute to yellow-cedar decline? Forest Ecology and Management, 262(12), 2142–2150. https://doi.org/10.1016/j.foreco.2011.08.004

6 Krapek, J., Hennon, P. E., D’Amore, D. V., & Buma, B. (2017). Despite available habitat at range edge, yellow‐cedar migration is punctuated with a past pulse tied to colder conditions. Diversity and Distributions, 23(12), 1381–1392. https://doi.org/10.1111/ddi.12630

7 USDA Forest Service. (2020). Forest Health Conditions in Alaska – 2020. U.S. Department of Agriculture, Forest Service, Alaska Region. Publication R10-PR-46. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd903361.pdf

8 Leighty, W. W., Hamburg, S. P., & Caouette, J. (2006). Effects of Management on Carbon Sequestration in Forest Biomass in Southeast Alaska. Ecosystems, 9(7), 1051–1065. https://doi.org/10.1007/s10021-005-0028-3

9 Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annual Review of Ecology, Evolution, and Systematics, 48(1), 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234

10 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386

11 McNicol, G., Bulmer, C., D’Amore, D., Sanborn, P., Saunders, S., Giesbrecht, I., Arriola, S. G., Bidlack, A., Butman, D., & Buma, B. (2019). Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest. Environmental Research Letters, 14(1), 014004. https://iopscience.iop.org/article/10.1088/1748-9326/aaed52

12 Fellman, J. B., D’Amore, D. V., Hood, E., & Cunningham, P. (2017). Vulnerability of wetland soil carbon stocks to climate warming in the perhumid coastal temperate rainforest. Biogeochemistry, 133(2), 165–179. https://www.fs.fed.us/pnw/pubs/journals/pnw_2017_fellman001.pdf

13 Edwards, R. T., D’Amore, D. V., Biles, F. E., Fellman, J. B., Hood, E. W., Trubilowicz, J. W., & Floyd, W. C. (2021). Riverine Dissolved Organic Carbon and Freshwater Export in the Eastern Gulf of Alaska. Journal of Geophysical Research: Biogeosciences, 126(1). https://doi.org/10.1029/2020JG005725

14 Sergeant, C. J., Bellmore, J. R., McConnell, C., & Moore, J. W. (2017). High salmon density and low discharge create periodic hypoxia in coastal rivers. Ecosphere, 8(6). https://doi.org/10.1002/ecs2.1846

D.1. Terrestrial vertebrates in Áak’w & T’aakú Aaní (Richard Carstensen)

1 Carstensen, R., Wilson, M., & Armstrong, R. (2003). Habitat use of amphibians in northern Southeast Alaska. Juneau Nature. http://juneaunature.discoverysoutheast.org/content_item/habitat-use-of-amphibians-in- northern-southeast-alaska/

2 White, K., Levi, T., Breen, J., Britt, M., Merondun, J., Martchenko, D., Shakeri, Y., Porter, B., & Shafer, A. (2021). Integrating Genetic Data and Demographic Modeling to Facilitate Conservation of Small, Isolated Mountain Goat Populations. Journal of Wildlife Management, 85(2), 271-282. https://doi.org/10.1002/jwmg.21978

3 Morris Animal Foundation. (2020). New Probiotic Solution Could Treat Amphibian Fungal Disease in Boreal Toads. (June 9) https://www.morrisanimalfoundation.org/article/new-probiotic-solution-could-treat-amphibian-fungal-disease-boreal-toads

4 Goulson, D. (2019). The insect apocalypse, and why it matters. Current Biology, 29(19), R967–R971. https://www.sciencedirect.com/science/article/pii/S0960982219307961

5 van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., & Chase, J. M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368(6489), 417–420.
https://doi.org/10.1126/science.aax9931

D.3. Insects (Bob Armstrong)

1 Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809. https://doi.org/10.1371/journal.pone.0185809

What we’re doing: Community response

E. Upgrading infrastructure and mitigation (Katie Koester)

1 KTOO News Department. (2020). Record rain brings floods and mudslides to Juneau. December 2. https://www.ktoo.org/2020/12/02/record-rain-brings-floods-and-mudslides-to-juneau/

2 Federal Emergency Management Agency. (2021). Preliminary Damage Assessment Report. FEMA-4585-DR. https://www.fema.gov/sites/default/files/documents/PDAReport_FEMA4585DR-AK.pdf

3 City and Borough of Juneau. (2011). Juneau Climate Action and Implementation Plan. https://juneau.org/wp-content/uploads/2017/03/CAP_Final_Nov_14.pdf

4 Juneau Commission on Sustainability. (2017). Juneau Renewable Energy Strategy (JRES) Draft Plan 2017. (July 7). https://juneau.org/community-development/jcos-deprecated/renewable-energy-strategy

5 Tetra Tech. (2021). Downtown Juneau Landslide and Avalanche Assessment, 3rd draft. May 28. (Commissioned by City and Borough of Juneau) File: ENG.EARC03168-01. https://juneau.org/wp-content/uploads/2021/07/Downtown_Juneau_Landslide_and_Avalanche_Assessment_IFR_Report_Third%20Draft_Reduced.pdf

G. Growing demand for hydropower (Duff Mitchell)

1 Federal Energy Regulatory Commission. (2016). Final Environmental Impact Statement for the Sweetheart Lake Hydroelectric Project (P-13563-003) (May 31). https://www.ferc.gov/final-environmental-impact-statement-sweetheart-lake-hydroelectric-project-p-13563-003-issued-may

2 Juneau Commission on Sustainability. (2017). Juneau Renewable Energy Strategy (JRES) Draft Plan 2017. (July 7). https://juneau.org/community-development/jcos-deprecated/renewable-energy-strategy

3 Mai, T. T., Jadun, P., Logan, J. S., McMillan, C. A., Muratori, M., Steinberg, D. C., Vimmerstedt, L. J., Haley, B., Jones, R., & Nelson, B. (2018). Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-71500, 1459351. https://www.nrel.gov/docs/fy18osti/71500.pdf

4 Environmental and Energy Study Institute (EESI). (n.d.). Beneficial Electrification. https://www.eesi.org/electrification/be

5 Blackshear, B., Crocker, T., Drucker, E., Filoon, J., Knelman, J., & Skiles, M. (2011). Hydropower Vulnerability and Climate Change: A Framework for Modeling the Future of Global Hydroelectric Resources. Middlebury College Environmental Studies Senior Seminar. https://www.academia.edu/3119763/Hydropower_Vulnerability_and_Climate_Change

6 Markoff, M. S., & Cullen, A. C. (2008). Impact of climate change on Pacific Northwest hydropower. Climatic Change, 87(3–4), 451–469. https://doi.org/10.1007/s10584-007-9306-8
7 U.S. Dept of Energy. (2017). 2nd Report to Congress on Effects of Climate Change on Federal Hydropower. https://www.energy.gov/sites/prod/files/2017/01/f34/Effects-Climate-Change-Federal-Hydropower-Program.pdf

8 Cherry, J. E., Walker, S., Fresco, N., Trainor, S., & Tidwell, A. (2010). Impacts of Climate Change and Variability on Hydropower in Southeast Alaska: Planning for a Robust Energy Future. NOAA IR 17388. https://repository.library.noaa.gov/view/noaa/17388

9 Amir Jabbari, A., & Nazemi, A. (2019). Alterations in Canadian Hydropower Production Potential Due to Continuation of Historical Trends in Climate Variables. Resources, 8(4), 163. https://doi.org/10.3390/resources8040163

10 Jacobs, A., & Thoman, R. (n.d.). Drought in A Rainforest...How Can That Be?? Alaska Center for Climate Assessment and Policy, PowerPoint presentation. https://www.climatehubs.usda.gov/sites/default/files/Aaron%20Jacobs%20Drought%20in%20a%20Rainforest.pdf

11 Leffler, J. (2019). SEAPA approves $850,000 for Petersburg and Wrangell diesel use. KSTK. June 20. https://www.kstk.org/2019/06/20/seapa-approves-850000-for-petersburg-and-wrangell-diesel-use/

12 U.S. Government Accountability Office. (2021). Electricity Grid Resilience: Climate Change Is Expected to Have Far-reaching Effects and DOE and FERC Should Take Actions. GAO-21-46. https://www.gao.gov/assets/gao-21-346.pdf

13 Ibid.

14 Chang, J. & Pfeifenberger, J. (2016). Well-Planned Electric Transmission Saves Customer Costs: Improved Transmission Planning Is Key to the Transition to a Carbon Constrained Future. The Brattle Group, PowerPoint presentation. https://www.brattle.com/wp-content/uploads/2017/10/7235_well-planned_electric_transmission_saves_customers_costs_ppt.pdf

15 Elgqvist, E. (2021). Battery Storage for Resilience. Resilient Energy Platform. NREL/TP-7A40-79850, National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy21osti/79850.pdf

16 U.S. EPA. (2020) Environmental Annual Environmental Justice Progress Report FY 2020. https://www.epa.gov/sites/default/files/2021-01/documents/2020_ej_report-final-web-v4.pdf

17 Wilson, R. & Biewald, B. (2013). Best Practices in Electric Utility Integrated Resource Planning. Regulatory Assistance Project (RAP). Synergy Energy Economics, Inc. https://www.raponline.org/knowledge-center/best-practices-in-electric-utility-integrated- resource-planning/

H. Leading a shift in transportation (Duff Mitchell)

1 Gross, B. K. (2020). 2030: At least 1 in 5 vehicles must be EV. What will it take? Rocky Mountain Institute. https://www.cargroup.org/wp-content/uploads/2020/09/Britta-Presentation.pdf

2 Domonoske, C. (2021). From Amazon To FedEx, The Delivery Truck Is Going Electric. NPR, March 17.
https://www.npr.org/2021/03/17/976152350/from-amazon-to-fedex-the-delivery-truck-is-going-electric

3 Forsgren, M., Östgren, E., & Tschiesner, A. (2019). Harnessing Momentum for electrifying heavy machinery and equipment. McKinsey & Company. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/harnessing-momentum-for-electrification-in-heavy-machinery-and-equipment

4 Infineon. (2021). Why ships of the future will run on electricity. https://www.infineon.com/cms/en/discoveries/electrified-ships/#:~:text=One%20advantage%20of%20battery%20operation,reach%20%2420%20billion%20by%202027

5 Washington State Ferries System Electrification Plan. (2020). WSDOT. https://wsdot.wa.gov/sites/default/files/2021-11/WSF-SystemElectrificationPlan-December2020.pdf

6 Sterling, I. (2019). New funding secured for cleaner, greener ferries. WSDOT. https://wsdot.wa.gov/about/news/2019/new-funding-secured-cleaner-greener-ferries

7 Banks, K. (2021). In an exclusive interview, BC Ferries CEO Mark Collins outlines his plan to convert at least half of the operator’s 36-vessel fleet to electric, updates his pitch for government support, and reflects on a disappointing lack of interest from Canadian shipyards. Electric Autonomy Canada. https://electricautonomy.ca/2021/09/11/bc-ferries-new-hybrid-electric-vessels/

8 Schisler, C. (2021). BC Ferries aims to have 12-14 fully electric vessels by 2032. Oak Bay News, August 21. https://www.oakbaynews.com/news/bc-ferries-aims-to-have-12-14-fully-electric-vessels-by-2032/

9 BC Ferries. (2020). Island Class Ferries 2020. https://www.bcferries.com/in-the-community/projects/island-class-ferries-2020

10 Chan, K. (2021). BC Ferries proposes building 7 additional electric-battery ships in Canada. Daily Hive, February 2. https://dailyhive.com/vancouver/bc-ferries-island-class-vessels-electrification-canada-strategy

11 Renewable Juneau. (2021). Juneau All Aboard with Creation of a ‘No Idle Zone’ for Ships. https://renewablejuneau.org/2021/07/29/juneau-all-aboard-with-creation-of-a-no-idle-zone-for-ships/

12 Hurtigrutin Expeditions. (n.d.). Hybrid Electric–Powered Ships. https://www.hurtigruten.com/our-ships/ms-roald-amundsen/hybrid-electricpowered-ship/

13 Sterling, I. (2019). New funding secured for cleaner, greener ferries. WSDOT. https://wsdot.wa.gov/about/news/2019/new-funding-secured-cleaner-greener-ferries

14 Schisler, C. (2021). BC Ferries aims to have 12-14 fully electric vessels by 2032. Oak Bay News, August 21. https://www.oakbaynews.com/news/bc-ferries-aims-to-have-12-14-fully-electric-vessels-by-2032/

I. Maintaining mental health through community and recreation (Linda Kruger and Kevin Maier)

1 Cianconi, P., Betrò, S., & Janiri, L. (2020). The Impact of Climate Change on Mental Health: A Systematic Descriptive Review. Frontiers in Psychiatry, 11(74). https://doi.org/10.3389/fpsyt.2020.00074

2 Kruger, L. (Ed.). (2010). Healthy Communities: Improving Health and Well-Being. Rural Connections, 5(1). Western Rural Development Center. https://www.usu.edu/wrdc/files/news-publications/RC-Sept-2010.pdf

3 Frumkin, H., Bratman, G. N., Breslow, S. J., Cochran, B., Kahn Jr, P. H., Lawler, J. J., Levin, P. S., Tandon, P. S., Varanasi, U., Wolf, K. L., & Wood, S. A. (2017). Nature Contact and Human Health: A Research Agenda. Environmental Health Perspectives, 125(7), 075001. https://doi.org/10.1289/EHP1663

J. Food security (Darren Snyder and Jim Powell)

1 Orttung, R. W., Powell, J., Fox, J., & Franco, C. (2019). Strengthening Food Security Near the Arctic Circle: Case Study of Fairbanks North Star Borough, Alaska. Sustainability, 11(10), 2722. https://doi.org/10.3390/su11102722

2 Caster, C. D. (2011). Assessing Food Security in Fairbanks, Alaska: A Survey Approach to Community Food Production. University of Alaska. Senior Theses, ST 2011-01. http://hdl.handle.net/11122/3186

3 Juneau dairy farms, ca. 1890-1950’s. (n.d.). https://researchworks.oclc.org/archivegrid/collection/data/53966883

4 Azadi, H., Movahhed Moghaddam, S., Burkart, S., Mahmoudi, H., Van Passel, S., Kurban, A., & Lopez-Carr, D. (2021). Rethinking resilient agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. Journal of Cleaner Production, 319, 128602. https://doi.org/10.1016/j.jclepro.2021.128602

K. Large cruise ship air emissions (Jim Powell)

1 Rain Coast Data. Southeast Alaska by the Numbers 2021. (2021). https://www.raincoastdata.com/project/southeast-alaska-by-the-numbers-2021/

2 Pemberton, J. (2021). The last cruise ship of Juneau’s short, reduced season has come and gone. Alaska Public Media, October 21. https://www.alaskapublic.org/2021/10/21/the-last-cruise-ship-of-juneaus-short-reduced-season-has-come-and-gone/#:~:text=E%2DNewsletters-,The%20last%20cruise%20ship%20of%20Juneau’s%20short,season%20has%20come%20and%20gone&text=On%20Wednesday%2C%20the%204%2C000%2Dpassenger,big%20ships%20visiting%20Southeast%20Alaska

3 Jonson, J. E., Gauss, M., Schulz, M., Jalkanen, J.-P., & Fagerli, H. (2020). Effects of global ship emissions on European air pollution levels. Atmospheric Chemistry and Physics, 20(19), 11399–11422. https://doi.org/10.5194/acp-20-11399-2020

4 Faber, J., Markowska, A., Nelissen, D., Davidson, M., Eyring, V., Cionni, I., Selstad, E., Kågeson, P., Lee, D., Buhaug, Ø., Lindtsad, H., Roche, P., Humpries, E., Graichen, J., Cames, M., & Schwarz, W. (2009). Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport. Institute for Biodiversity and Ecosystem Dynamics (IBED). Pub. No. 09.7731.78 https://dare.uva.nl/search?identifier=7252edce-88b0-440f-9f2b- 8343d55a1b76

5 Lamers, M., Eijgelaar, E., & Amelung, B. (2015). The environmental challenges of cruise tourism: Impacts and governance. In D. Scott, S. Gossling, & C. M. Hall (Eds.) The Routledge Handbook of Tourism and Sustainability (pp. 430–439). Routledge.

6 Alaska Department of Environmental Conservation, Division of Air Quality. (2020). Summary Report for the Juneau Saturation Study. April – October 2019. https://media.ktoo.org/wp-content/uploads/2021/03/juneau-cruise-ship-project-2019-report-june-2020.pdf

7 Howitt, O. J. A., Revol, V. G. N., Smith, I. J., & Rodger, C. J. (2010). Carbon emissions from international cruise ship passengers’ travel to and from New Zealand. Energy Policy, 38(5), 2552–2560. https://doi.org/10.1016/j.enpol.2009.12.050

8 Lloret, J., Carreño, A., Carić, H., San, J., & Fleming, L. E. (2021). Environmental and human health impacts of cruise tourism: A review. Marine Pollution Bulletin, 173, Part A, 112979. https://doi.org/10.1016/j.marpolbul.2021.112979

9 International Maritime Organization. (2018). IMO Annex 11. Resolution MEPC.304(72). Initial IMO Strategy on Reduction of GHG Emissions from Ships. Adopted April 13, 2018. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.304(72).pdf

L. Tourists’ views on climate change mitigation (Jim Powell)

1 Jones, E. (2021). Sustainable Travel Survey 2021—Importance & Sentiment to Fight Climate Change When Booking Travel. The Vacationer, April 26. Updated March 31, 2022. https://thevacationer.com/sustainable-travel-survey-2021/

M. Lowering greenhouse gas emissions (Jim Powell)

1 Cadman, T., Maguire, R., & Sampford, C. (Eds.). (2018). Governing the Climate Change Regime: Institutional integrity and integrity systems. Routledge.

2 Bulkeley, H., & Betsill, M. (2006). Cities and Climate Change: Urban sustainability and global environmental governance. Routledge.

3 Betsill, M., & Bulkeley, H. (2007). Looking Back and Thinking Ahead: A Decade of Cities and Climate Change Research. Local Environment, 12(5), 447–456. https://doi.org/10.1080/13549830701659683

4 Satterthwaite, D. (2008). Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 20(2), 539–549. https://doi.org/10.1177/0956247808096127

5 Unlocking Climate Action in Megacities. (2016). C40. https://www.c40knowledgehub.org/s/article/Unlocking-Climate-Action-in-Megacities?language=en_US

Graphics and data sources

What we’re experiencing: Atmospheric, marine, terrestrial, and ecological effects.

A.2 More precipitation
Figure 1: Rick Thoman, Alaska Center for the Climate Assessment and Policy (ACCAP) (Data source: NOAA/NSIA)

A.3 Higher temperatures
Figure 2: Rick Thoman, ACCAP (Data source: NOAA/NSIA)

A.4 Less snowfall
Figure 3: Eran Hood, UAS Alaska Coastal Rain Forest Center (ACRC) (Data source: National Weather Service, Juneau)

Figure 4: Eran Hood, UAS Alaska Coastal Rain Forest Center (ACRC) (Data source: National Weather Service, Juneau)

B.1 Surface uplift and sea level rise
Figure 5: Eran Hood, UAS ACRC ( Data source: adapted from Hu, Y., & Freymueller, J. T. (2019). Geodetic Observations of Time‐Variable Glacial Isostatic Adjustment in Southeast Alaska and Its Implications for Earth Rheology. Journal of Geophysical Research, 124(9), 9870–9889.)

Figure 6: Eran Hood, UAS ACRC (Data source: adapted from NOAA (2021)

B.2 Extensive effects of a warming ocean
Figure 7: Heidi Pearson, UAS (Data source: Dorn, M., Cunningham, C., Dalton M., Fadely, B., Gerke, B., Hollowed, A., Holsman, K., Moss, J., Ormseth, O., Palsson, W., Ressler, P., Rogers, L., Sigler, M., Stabeno, P., & Szymkowiak, M. (2018). A Climate Science: Regional Action Plan for the Gulf of Alaska. NOAA Technical Memorandum NMFS-AFSC, 376.)

Figure 8: Kristin Timm, UAF, Source: Adapted from “Icefield to Ocean” by Kristin Timm, licensed under CC BY 4.0

B.3 Increasing ocean acidification
Figure 9: Evans, W., Lebon, G. T., Harrington, C. D., Takeshita, Y., Bidlack, A. (2022) Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry. Biogeosciences, 19, 1277–1301. https://doi.org/10.5194/bg-19-1277-2022

C. 1 More landslides
Figure 10: Sonia Nagorski, UAS, ACRC. Days per year of precipitation greater then .50. (Data Source: NOAA, NWS)

C.2 Mendenhall Glacier continues to retreat
Figure 11: Amber Chapin and Michael Penn. Mendenhall Visitor Artistic Rendering

Figure 12: Jason Amundson, UAS ACRC. Glacial lake outburst floods in Juneau.

C.3 Tongass Forest impacts and carbon
Figure 13: McNicol, G., Bulmer, C., D’Amore, D., Sanborn, P., Saunders, S., Giesbrecht, I., Arriola, S. G., Bidlack, A., Butman, D., & Buma, B. (2019). Large, climate-sensitive soil carbon stocks mapped with pedology-informed machine learning in the North Pacific coastal temperate rainforest. Environmental Research Letters, 14(1), 014004. https:// doi.org/10.1088/1748-9326/aaed52

D.2 Three animals as indicators of change
Figure 14: White, K. S., Gregovich, D. P., & Levi, T. (2017). Projecting the future of an alpine ungulate under climate change scenarios. Global Change Biology, 24(3), 1136-1149.

What We’re Doing: Community Response

E. Upgrading infrastructure and mitigation
Figure 15: Katie Koester, CBJ Engineering and Public Works. 30-day average of effluent volume and precipitation (Data source: CBJ Mendenhall Waste Treatment).

F. Upgrading utilities and other energy consumers
Figure 16: Alec Mesdag, Alaska Energy, Light, and Power. Juneau’s major energy sources and use. (Data source: CBJ Renewable Energy Strategy).

G. Growing demand for hydropower
Figure 17: Duff Mitchell. Juneau Hydro. Electricity Share of Final Energy doubles from 2016 to 2050 under the high scenario. (Data source: Mai, T. T., Jadun, P., Logan, J. S., McMillan, C. A., Muratori, M., Steinberg, D. C., Vimmerstedt, L. J., Haley, B., Jones, R., & Nelson, B. (2018). Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-71500, 1459351.)

H. Leading a shift in transportation
Figure 18: Duff Mitchell, Juneau Hydro. Electric vehicle use in Juneau. (Data source: Alaska Department of Motor Vehicles).

K. Large cruise ship air emissions
Figure 19a: Jim Powell, UAS, ACRC, Juneau Cruise Ship Port Calls. (Data source: Rain Coast Data. Southeast Alaska by the numbers 2021.)

Figure 19b: Pemberton, J. (2021). The last cruise ship of Juneau’s short, reduced season has come and gone. Alaska Public Media, October 21.

M. Lowering greenhouse gas emissions
Figure 20: Jim Powell, UAS, ACRC. (Data source: CBJ Archives.)

Appendix: Juneau’s nonprofit climate change organizations

Renewable Juneau (https://renewablejuneau.org) and its Juneau Carbon Offset Fund (https://juneaucarbonoffset.org)

350 Juneau.org (https://350juneau.org)

Alaska Heat Smart - AHS (https://akheatsmart.org)

Interfaith Power and Light
(https://www.uri.org/who-we-are/cooperation-circle/alaska-interfaith-power-and-light)